June 22, 2016:
The Israeli firm (Elbit) that pioneered the use of helmet-mounted display systems for jet fighter pilots recently came out with versions for helicopter pilots and crews of armored vehicles. The helicopter version (BrightNite) and uses a multidirectional FLIR (Forward Looking Infrared Radar) to see clearly at night and display that data on special helmet visors used by pilots. In effect, while flying at night or in bad weather the BrightNite provides a form of “virtual reality” (VR) that enables the pilot to look in any direction and see what is out there in great detail and in real time. The visor display still provides pilot selectable aircraft data (speed, direction, overlays of mission data and so on). BrightNite also allows the pilot to look down and, in effect, see through the cockpit floor at the terrain below.
Then there is the IronVision helmets for crews of armored vehicles. Using the IronVision visor displays each member crew can, while inside the vehicle, see what the day/night vidcams mounted on all sides of the vehicle see. In effect the crew can see through the armor at what is going on outside the vehicle. The IronVision HMS (Helmet Mounted System) is a major breakthrough because vehicle crews in combat are often forced to operate “buttoned up” (no one with their head outside the vehicle to see what was going on) because of intense enemy fire.
Armored vehicles have been moving towards something like IronVision since the 1990s as more and more vidcams were mounted out on the outside of the vehicle. But the video had to be viewed on flat screen displays and crew had to click from one camera to another to see in different directions. By now most modern tanks (and many other armored vehicles) have enough cameras to see 360 degrees (all around) the vehicle as well as up. But IronVision eliminates the need to look at a flat screen and fiddle with camera controls. Crew simply turn on the HMS and see whatever they want by turning their heads. This is particularly critical in urban combat, where enemy troops, especially those armed with anti-vehicle rockets, can be anywhere, including the upper floors of buildings.
The tech for IronVision came from similar “smart helmets” developed for fighter pilots, a process that began in the 1950s. The first visor displays appeared in the 1970s and soon evolved into the equivalent of a see-through computer monitor or HUD (Head Up Display) on the helmet visor. The most recent versions enable the pilot to can turn his head towards a target, get an enemy aircraft into the crosshairs displayed on the visor, and fire a missile that will promptly go after target the pilot was looking at. There is an additional advantage in letting the pilot look around more often without having to look down at cockpit displays, or straight ahead at a HUD mounted in front of the pilot just inside the canopy. The helmet mounted HUD gave an experienced pilot an extra edge in finding enemy aircraft or targets, and maneuvering to get into a better position for attacks. These pilot helmets were also useful for air-to-ground attacks, which the latest VR versions like BrightNite are also designed to do.
All this evolved from early efforts to create a HUD that projected data on a small transparent screen in front of the pilot. These first appeared in the late 1950s and were common in jet fighters by the late 1960s. The first helmet mounted displays appeared in South Africa in the 1970s. In the 1980s Israeli companies took the lead in developing this technology, and made many technical breakthroughs that led to DASH (Display and Sight Helmet) system in the 1980s. Elbit teamed up with American firms to develop and market JHMCS (Joint Helmet Mounted Cueing Systems), which is largely an improved DASH system and entered service in 2002. Since then the technology has been developed rapidly to produce a combined VR and HUD.